
Quick Guide

SO₂ RGB

*interpretation still under investigation

Sulfur dioxide (SO_2) is a gas commonly released into the atmosphere during volcanic eruptions. In high concentrations it is toxic to humans and has considerable environmental effects, including volcanic smog, acid rain, and is harmful to vegetation downwind of the eruption. The SO_2 RGB product can be used to detect and monitor large sulfur dioxide emissions from volcanoes, as well industrial facilities such as power plants.

SO₂ RGB Recipe

S NOAA ~ NASA

Color	Band / Band Diff. (μm)	Min to Max Gamma	Physically Relates to	Small contribution to pixel indicates	<u>Large</u> Contribution to pixel indicates
Red	6.95 – 7.34 Ch 9 – Ch 10	-4.0 to 2.0 °C 1	Vertical water vapor difference, presence of SO ₂	Low-levels, relatively drier atmosphere	SO ₂ is present in mid- and high-levels of the atmosphere
Green	10.35 – 8.50 Ch 13 – Ch 11	-4.0 to 5.0 °C 1	Moisture, stability, particle size and phase, presence of ash and SO ₂	Small crystal ice cloud	Low- and mid-level cloud, volcanic ash and/or SO ₂
Blue	10.35 Ch 13	-30.1 to 29.8 °C 1	Cloud top or surface temperature	Mid- and high-levels in the atmosphere	Surface or low-levels in the atmosphere

Impact on Operations

Primary Application

Detection of sulfur dioxide:

Stronger absorption of SO₂ is found in Band 10 (7.34 μm, a Water Vapor channel) and weaker

 SO_2 absorption is found in Band 11 (8.50 μ m, an Infrared channel). These bands are differenced with similar water vapor and infrared channels in the red and green components respectively to highlight the presence of SO_2 .

Limitations

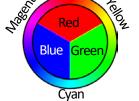
Distinguishing SO₂ from ash and

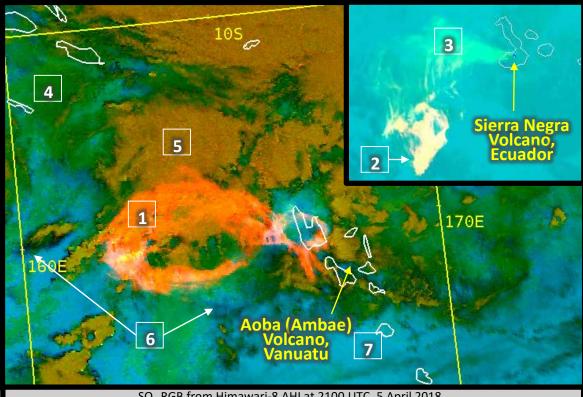
water vapor: Volcanic eruptions are often composed of ash and a mixture of gases, including water vapor and SO₂. Distinguishing the components can be a challenge, and water vapor can mask the ash and aerosol signals.

Low-level clouds: In the RGB, the light green color of low-level SO₂ is a similar color to that of low-level cloud.

Upper-level clouds: Thick opaque upper-level clouds can mask the SO₂ signal below.

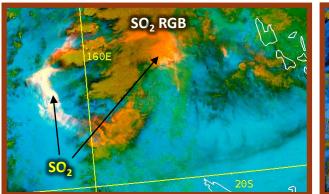
SO₂ RGB *interpretation still under investigation

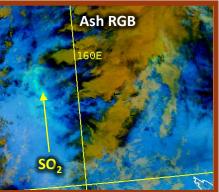

Quick Guide

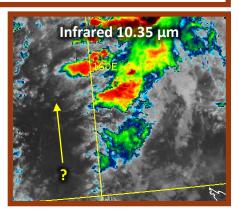

RGB Interpretation

This RGB composite was developed by the Japan Meteorological Agency (JMA) for Himawari-8. Interpretation is still under investigation.

RGB Color Guide




 SO_2 RGB from Himawari-8 AHI at 2100 UTC, 5 April 2018 SO_2 RGB from GOES-16 ABI at 0130 UTC, 27 June 2018 (inset, upper right)


Comparison to Ash RGB and 10.35 µm Infrared:

The SO₂ RGB is a modified version of the Ash RGB recipe, tuned to better detect sulfur dioxide emissions. For the RED component, in place of the longwave difference in the Ash RGB, band 10 is differenced to take advantage of the strong SO₂ absorption region near 7.34 μ m. For the GREEN component, similar channels are used in both RGBs but with different ranges, to take advantage of the lesser SO₂ absorption region near 8.50 μ m. The BLUE component is the same for both RGBs.

The three images below are from the eruption of the Aoba Volcano shown above, but a few hours later at 0250 UTC, 6 April 2018. In the SO₂ RGB, SO₂ over (cold) cloud is orange, while SO₂ over (warm) ocean is white; in the Ash RGB, SO₂ is aqua green over ocean; in the IR 10.35 μ m imagery, SO₂ is not discernable.

