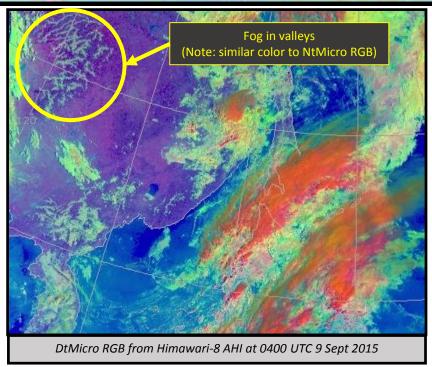


Daytime Microphysics RGB

Quick Guide



Why is the DtMicro RGB imagery Important?

The Daytime Microphysics (DtMicro) RGB combines information about the cloud brightness, cloud particle phase and size, and cloud top temperature in order to analyze convective clouds as well as other cloud and surface features. The cloud particle phase and size can be qualitatively determined to estimate if strong updrafts are associated with the convection or if warm rain processes active. Other benefits are identification of cloud types, including fog and low stratus as well as fires, snow, and contrails.

DtMicro RGB Recipe

Color	Band / Band Diff. (μm)	Physically Relates to	Small contribution to pixel indicates	Large Contribution to pixel indicates
Red	0.8	Visible brightness of cloud	Thin cloud or	Thick cloud (water and/or
		as proxy to thickness	non-reflective surface	ice) or reflective surface
Green	3.9	Phase and particle size of	Large particles in the	Small water or ice particles
	(reflectance only)	cloud tops	cloud tops, or on ground	in the cloud tops
Blue	10.4	Temperature of the	Very cold clouds or	Very warm clouds or surface
		surface being observed	surface	

Impact on Operations

Primary Application:

Convection: Orange clouds indicate strong convection. The convective, thick clouds

are visibly bright (large red) and the smaller particles at the cloud top are more reflective (medium green) while being very cold (small blue). Moderate to weak convection is dark orange to red (larger particles).

Low Cloud and Fog: Allows the separation of cloud features including low clouds and fog (aviation).

Low-Level Precip: Aside from deep convection, low level warm and cold precip. clouds are identified.

Land Features: snow/ice on the ground (bright magenta, fire hot spots (bright aqua)

Limitations

Daytime application:

The shortwave IR band uses only the reflectance portion and not the radiance. And,

the visible channel is only available during the day.

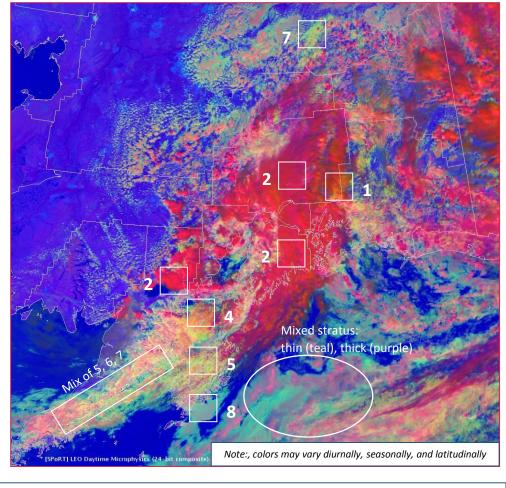
Large number of colors: A scene with many cloud types and surface variations will have a large number of colors, creating a complicated scene.

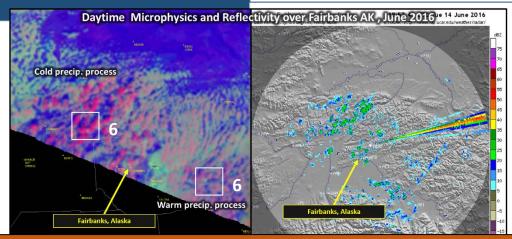
Sun Glint / Angle: Some cloud/land features will change color depending on how the solar reflectance is oriented compared to the satellite view

Varying Seasons / Latitude: Like single-channels, the reflectance/temperature will change with latitude/season, and hence influence the color.

Daytime Microphysics RGB

Quick Guide




RGB Interpretation

- Thick, small ice, high cloud
 Cb, strong convection, likely precip
 (orange) 1,3,4,5,6
- Thick, large ice, high cloud
 Cb, weak convection, likely precip
 (dark orange, red) 1,2,3
- Thin, small ice, high cloud
 Cirrus (green to dark green) 1,2,3,4
- Thick, large drops, mid cloud
 Supercooled water cloud (tan to light orange) 4
- Thick, small drops, mid cloud
 Supercooled water cloud
 (yellow to yellowish-green) 1,2,3,4,5,6
- Thick, large drops, low cloud
 Precipitating (warm rain process)
 (violet to dark magenta as particle
 size increases) 1,2,4,5
- Thick, small drops, low cloud Stratus/Stratoculumus (Bright green/blue) 1,2,4,5,6
- Thin, small drops, low cloud Fog and/or low stratus (dull aqua to gray) 4,5,6

References

- 1) Rosenfeld/Lensky 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT)
- 2) Rosenfeld/Lensky 1998: Satellite-based Insights into Precip. Formation in Continental/Maritime Convective Clouds
- 3) Schipper/Nietosvaara (EUMETrain), 2009: Operational use of RGBs (online training module)
- 4) Kerkmann/Rosenfeld (EUMETrain), 2004: Applications of MeteoSat Second Generation: The Day Microphysics RGB Product (training presentation)
- 5) Rosenfeld, 2013: Applications of MSG for insights into convective clouds (training presentation)
- 6) COMET. 2013: Multispectral Imagery: RGBs Explained

Complementary products: Rosenfeld (1998, 2008) describes the use of the DtMicro RGB to differentiate particle size and hence warm vs cold precipitation processes. The magenta represents a cold process while violet is warm, both at the same height.

Resources

UCAR/COMET

Multispectral Satellite

Applications: RGB Products

Explained.

NASA/SPORT

Aviation Forecasting RGB Products

EUMETrain

RGB Interpretation Guide