
Quick Guide

Day Snow-Fog RGB

Why is the Day Snow-Fog RGB Important?

SAN ~ NASA

On heritage GOES, it was difficult to distinguish white "reflective" snow from white "reflective" clouds on visible imagery. On the GOES-R series, the reflectance of snow, water, and ice clouds varies across the visible, near infrared, and infrared. The channels which bring out the distinguishing differences are combined in the Day Snow-Fog RGB to show greater contrast between snow and cloud than is generally possible with a single channel.

Day Snow-Fog RGB from GOES-16 ABI at 1735 UTC, 04 January 2018

Day Snow-Fog RGB Recipe

Color	Band / Band Diff. (μm)	Min to Max Gamma	Physically Relates to	Small contribution to pixel indicates	Large Contribution to pixel indicates
Red	0.86 (Ch. 3)	0 to 100 % albedo 1.7	Reflectance of clouds and surfaces	Water, thin cirrus	Thick clouds, snow, sea ice
Green	1.6 (Ch. 5)	0 to 70 % albedo 1.7	Reflectance of clouds and surfaces	Water, snow	Vegetated land, thick water clouds
Blue	3.9 - 10.3 (Ch. 7 – Ch. 13)	0 to 30 °C 1.7	Proxy for 3.9 μm reflected solar radiance	Water, snow	Thick clouds

Impact on Operations

Primary Application

Distinguish snow and clear ground from clouds: The Near IB 1.6

clouds: The Near IR 1.6 and IR 3.9 wavelengths are

useful for distinguishing non-reflective (dark) snow from reflective (bright) low-level water cloud. Low level cloud layers can be distinguished when thin middle or upper level clouds are present, particularly in an animation.

Cloud phase: Provides information on water versus ice cloud phase.

Limitations

Daytime only application: The 0.86 μ m, 1.6 μ m, and 3.9 μ m bands detect reflected visible solar radiation.

Solar angle: Low solar angles at sunrise and sunset change the color interpretation, as well as limited application for high latitudes during winter.

NOAA .

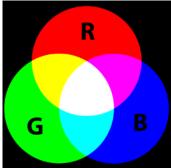
NASA

Cirrus clouds: Limited ability to detect thin cirrus clouds due to low contrast with background features. This can be mitigated somewhat by animation.

Coniferous forest: Areas of coniferous forest mask snow signature beneath the canopy.

Channel difference for blue component: The temperature difference does not capture the reflected solar component as intended by JMA or EUMETSAT, but is an adequate proxy.

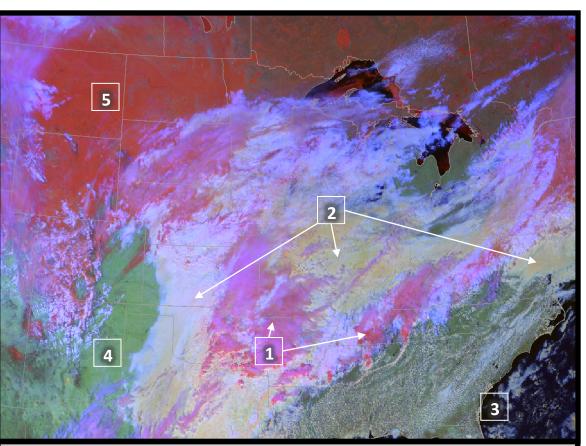
Contributors: Bernie Connell, Erin Dagg CSU/CIRA https://www.cira.colostate.edu/



RGB Interpretation

Note: colors may vary diurnally, seasonally, and latitudinally

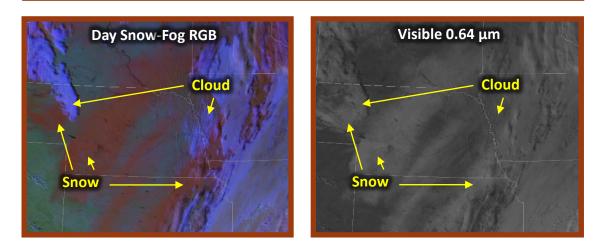
RGB Color Guide


Resources

JMA* Day Snow-Fog RGB

EUMeTrain* RGB Colour Interpretation Guide ('Snow RGB' formerly 'Day Solar RGB')

*Note: color interpretation is slightly different from these products as the 3.9 µm reflected solar component is used for blue


Hyperlinks not available when viewing material in AIR Tool

Day Snow-Fog RGB from GOES-16 ABI at 1917 UTC, 22 February 2018.

Comparison to visible imagery:

The colors of the Day Snow-Fog RGB make it easier to distinguish between low clouds and snow/ice compared to visible imagery, as seen in the images from 11 January 2018 (below). It also provides better identification of the thickness of low-level clouds.

